1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
siobhanunz4043 edited this page 4 months ago
This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled variations varying from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled versions of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that utilizes support finding out to improve thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A crucial distinguishing function is its reinforcement learning (RL) action, which was utilized to fine-tune the design's responses beyond the standard pre-training and tweak procedure. By incorporating RL, DeepSeek-R1 can adjust better to user feedback and objectives, eventually boosting both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, indicating it's equipped to break down complicated queries and reason through them in a detailed way. This assisted thinking procedure enables the model to produce more accurate, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT capabilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has recorded the industry's attention as a versatile text-generation design that can be incorporated into various such as representatives, sensible thinking and information interpretation jobs.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion criteria, making it possible for efficient reasoning by routing questions to the most pertinent expert "clusters." This approach allows the design to concentrate on various problem domains while maintaining total efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more efficient models to imitate the behavior and reasoning patterns of the larger DeepSeek-R1 model, utilizing it as an instructor design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this design with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent hazardous material, and assess designs against key safety criteria. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limitation boost, produce a limit boost request and connect to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Set up authorizations to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to introduce safeguards, prevent hazardous content, and examine models against crucial safety criteria. You can carry out precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to examine user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general circulation includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following areas demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, pick Model brochure under Foundation designs in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 design.

The model detail page provides vital details about the design's capabilities, pricing structure, and execution standards. You can discover detailed use instructions, including sample API calls and code bits for combination. The design supports various text generation tasks, consisting of content production, code generation, and question answering, using its reinforcement learning optimization and CoT reasoning capabilities. The page also includes deployment choices and licensing details to help you start with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, pick Deploy.

You will be triggered to configure the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Number of instances, get in a variety of instances (between 1-100). 6. For Instance type, choose your circumstances type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can set up innovative security and facilities settings, including virtual personal cloud (VPC) networking, service role approvals, and file encryption settings. For the majority of utilize cases, the default settings will work well. However, for production deployments, you may wish to examine these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the release is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in play area to access an interactive interface where you can experiment with different prompts and change model criteria like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for ideal results. For instance, material for reasoning.

This is an excellent way to check out the design's reasoning and text generation capabilities before integrating it into your applications. The play ground offers immediate feedback, demo.qkseo.in assisting you understand how the design responds to numerous inputs and letting you fine-tune your prompts for optimum outcomes.

You can rapidly evaluate the model in the playground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to carry out inference utilizing a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference criteria, and sends a request to produce text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML solutions that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses two practical approaches: using the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both approaches to help you choose the approach that best fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be triggered to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design browser displays available models, with details like the provider name and design abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each model card reveals key details, consisting of:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if suitable), indicating that this model can be registered with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the design card to see the design details page.

    The model details page consists of the following details:

    - The design name and provider details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you release the model, it's advised to examine the model details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to continue with release.

    7. For Endpoint name, use the automatically created name or develop a customized one.
  1. For Instance type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the number of circumstances (default: 1). Selecting suitable instance types and counts is vital for cost and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this model, we highly advise adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to release the design.

    The release procedure can take a number of minutes to finish.

    When release is complete, your endpoint status will change to InService. At this moment, the model is prepared to accept reasoning demands through the endpoint. You can monitor the release development on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is complete, you can conjure up the model using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the essential AWS consents and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for inference programmatically. The code for deploying the model is provided in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Tidy up

    To avoid unwanted charges, complete the steps in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design using Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace implementations.
  5. In the Managed implementations area, locate the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business construct ingenious services using AWS services and sped up compute. Currently, he is concentrated on establishing methods for fine-tuning and optimizing the reasoning performance of large language designs. In his spare time, Vivek enjoys hiking, seeing motion pictures, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about building services that assist clients accelerate their AI journey and unlock service value.